Purpose
- The package "Gold" simulates the 3-D incompressible driven cavity flow. The Legendre-Galerkin method was used for the spatial discretization, and the first- and second-order rotational pressure correction projection methods were used for the temporal discretization.
Specifications
- Name: Gold.
- Author: Feng Chen.
- Finishing date: 07/06/2011.
- Languages: Fortran 90.
- Required libraries: BLAS, LAPACK.
Simple Example
- Equation: \begin{equation} \begin{aligned} & \boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = \nu \Delta \boldsymbol{v} - \nabla p + \boldsymbol{f}, \\ & \nabla \cdot \boldsymbol{v} = 0, \\ & \boldsymbol{v}(x,y,z,0) = \boldsymbol{v}_0(x,y,z), \\ & \boldsymbol{v}|_{\partial \Omega} = \boldsymbol{0}. \end{aligned} \end{equation}
- Parameters: \begin{equation} \Omega =(-1,1)^3, \, T=1, \, \delta t = 0.01, \, N_x = N_y= N_z=64, \, \nu = 1. \end{equation}
- Exact solution and input functions: \begin{equation} \begin{aligned} & v_1(x,y,z,t) = 2\pi \sin^2 (\pi x) \sin(2\pi y) \sin(2\pi z) \sin(t), \\ &v_2(x,y,z,t) = -\pi \sin(2\pi x) \sin^2 (\pi y) \sin(2\pi z) \sin(t),\\ &v_3(x,y,z,t) = -\pi \sin(2\pi x) \sin (2\pi y) \sin^2(\pi z) \sin(t),\\ & p(x,y,z,t) = \cos(\pi x) \cos(\pi y) \cos (\pi z) \sin(t), \end{aligned} \end{equation} then $\boldsymbol{f}(x,y,t)$ is calculated accordingly.
Quick Start
- Compiling and running:
cd ./Gold make library gfortran Gold_Main.cu -llibrary -llapack -lblas ./a.out
- Output:
Second-order scheme was used. At step 20 Error of v = 1.71716801470710173E-004 At step 20 Error of p = 4.30641138903224419E-002 At step 40 Error of v = 1.61822030845909292E-004 At step 40 Error of p = 7.41918977991906092E-002 At step 60 Error of v = 1.45463465091464418E-004 At step 60 Error of p = 0.10235141260382691 At step 80 Error of v = 1.23321771533398253E-004 At step 80 Error of p = 0.12646838834271690 At step 100 Error of v = 9.62650234262930784E-005 At step 100 Error of p = 0.14556457932094957 ...
- CPU: Intel(R) Xeon(R) CPU X5550 @2.67GHz.
- OS: CentOS release 6.4 (Final).
- Compiler: gfortran 4.5.1.
References
- Guermond, J. L. and Shen, J. On the error estimates for the rotational pressure-correction projection methods, Mathematics of Computation, No. 248 (2003).
- Shen, J. Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM Journal on Scientific Computing, Vol. 15, No. 6 (1994).
Code Highlights
!< !! A typical procedure in the rotational pressure correction !! projection scheme !< !! calculate the nonlinear term and the gradient of the pressure. call GoldSpace_Calculate_Convection(SV, B%velocity(:,:,:,:,co-1)+ & GoldVic, B%conv(:,:,:,:,co-1)) call GoldSpace_Calculate_Gradient(SP, B%pressure(:,:,:,co-1), B%gradp) !! form the right side of the momentum equation. B%velocity(:,:,:,:,co) = 0d0 do io = 0, co - 1 B%velocity(:,:,:,:,co) = B%velocity(:,:,:,:,co) - & (T%a(co,io)/T%dt) * B%velocity(:,:,:,:,io) - & T%b(co,io) * B%conv(:,:,:,:,io) end do B%gradp2 = 0d0 B%gradp2(0:SP%Np(1),0:SP%Np(2),0:SP%Np(3),1:3) = B%gradp B%velocity(:,:,:,:,co) = B%velocity(:,:,:,:,co) - B%gradp2 + & B%exfr + GoldVisco*GoldVicdd !! solve for the velocity field. call GoldSpaceTime_Solve_velocity(co, SV, B%velocity(:,:,:,:,co)) !! calculate divergence of the velocity field. call GoldSpace_Calculate_Divergence(SV, & B%velocity(:,:,:,:,co), B%divv) !! form the right side of the projection equation. B%divv2 = B%divv(0:SP%Np(1),0:SP%Np(2),0:SP%Np(3)) B%pressure(:,:,:,co) = -(T%a(co,co)/T%dt) * B%divv2 !! solve for the (auxiliary) B%pressure. call GoldSpaceTime_Solve_pressure(co, SP, B%pressure(:,:,:,co)) !! update the velocity and the pressure. call GoldSpace_Calculate_Gradient(SP, B%pressure(:,:,:,co), B%gradp) B%gradp2 = 0d0 B%gradp2(0:SP%Np(1),0:SP%Np(2),0:SP%Np(3),1:3) = B%gradp B%velocity(:,:,:,:,co) = B%velocity(:,:,:,:,co) - & (T%dt/T%a(co,co)) * B%gradp2 B%pressure(:,:,:,co) = B%pressure(:,:,:,co-1) + & B%pressure(:,:,:,co) - GoldVisco * B%divv2
No comments:
Post a Comment