Purpose
- The package "Iron" simulates the 2-D incompressible driven cavity flow. The Legendre-Galerkin method was used for the spatial discretization, and the first- and second-order rotational pressure correction projection methods were used for the temporal discretization.
Specifications
- Name: Iron.
- Author: Feng Chen.
- Finishing date: 06/30/2011.
- Languages: Fortran 90.
- Required libraries: BLAS, LAPACK.
Simple Example
- Equation: \begin{equation} \begin{aligned} & \boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = \nu \Delta \boldsymbol{v} - \nabla p + \boldsymbol{f}, \\ & \nabla \cdot \boldsymbol{v} = 0, \\ & \boldsymbol{v}(x,y,0) = \boldsymbol{v}_0(x,y), \\ & \boldsymbol{v}|_{\partial \Omega} = \boldsymbol{0}. \end{aligned} \end{equation}
- Parameters: \begin{equation} \Omega =(-1,1)^2, \, T=1, \, \delta t = 0.001, \, N_x = N_y= 128, \, \nu = 1. \end{equation}
- Exact solution and input functions: \begin{equation} \begin{aligned} & v_1(x,y,t) = \pi \sin(2\pi y) \sin^2 (\pi x) \sin(t), \\ &v_2(x,y,t) = \pi \sin(2\pi x) \sin^2 (\pi y) \sin(t),\\ & p(x,y,t) = \cos(\pi x) \cos(\pi y) \sin(t), \end{aligned} \end{equation} then $\boldsymbol{f}(x,y,t)$ is calculated accordingly.
Quick Start
- Compiling and running:
cd ./Iron make library gfortran Iron_Main.cu -llibrary -llapack -lblas ./a.out
- Output:
Second-order scheme was used. --------- 0 init ----------------- Error of v = 0.0000000000000000 Error of p = 0.0000000000000000 --------- 1 250 ----------------- Error of v = 2.00242220500198424E-006 Error of p = 3.29543665066828195E-003 --------- 2 500 ----------------- Error of v = 1.81394643174368083E-006 Error of p = 6.30056824367714041E-003 --------- 3 750 ----------------- Error of v = 1.51268851000740494E-006 Error of p = 8.91364994804177968E-003 --------- 4 1000 ----------------- Error of v = 1.11737921600563328E-006 Error of p = 1.09726145825772559E-002 ...
- CPU: Intel(R) Xeon(R) CPU X5550 @2.67GHz.
- OS: CentOS release 6.4 (Final).
- Compiler: gfortran 4.5.1.
References
- Guermond, J. L. and Shen, J. On the error estimates for the rotational pressure-correction projection methods, Mathematics of Computation, No. 248 (2003).
- Shen, J. Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM Journal on Scientific Computing, Vol. 15, No. 6 (1994).
Code Highlights
!< !! A typical procedure in the rotational pressure correction !! projection scheme !< !! calculate the nonlinear convection term !! and the gradient of pressure. call IronSpace_Calculate_Convection(SV, B%velocity(:,:,:,co-1)+& IronVic, B%conv(:,:,:,co-1)) call IronSpace_Calculate_Gradient(SP, B%pressure(:,:,co-1), B%gradp) !! test grad(p), can be commented. do i = 1, 2 call IronSpace_Transform(SP, B%gradp(:,:,i), & IronGradPphy(:,:,i), IronS2P) end do !! form the right side of the velocity equation. B%velocity(:,:,:,co) = 0d0 do io = 0, co - 1 B%velocity(:,:,:,co) = B%velocity(:,:,:,co) - (T%a(co,io)/T%dt) * & B%velocity(:,:,:,io) - T%b(co,io) * B%conv(:,:,:,io) + & IronLambda*T%b(co,io)*B%pfi(:,:,:,io) end do B%gradp2 = 0d0 B%gradp2(0:SP%Np(1),0:SP%Np(2),1:2) = B%gradp B%velocity(:,:,:,co) = B%velocity(:,:,:,co) - B%gradp2 + & B%exfr + IronVisco*IronVicdd !! solve for the velocity field. call IronSpaceTime_Solve_velocity(co, SV, B%velocity(:,:,:,co)) !! calculate divergence of the velocity field. call IronSpace_Calculate_Divergence(SV, B%velocity(:,:,:,co), B%divv) !! form the right side of the projection equation. B%divv2 = B%divv(0:SP%Np(1),0:SP%Np(2)) B%pressure(:,:,co) = -(T%a(co,co)/T%dt) * B%divv2 !! solve for the (auxiliary) pressure. call IronSpaceTime_Solve_pressure(co, SP, B%pressure(:,:,co)) !! update the velocity and pressure. call IronSpace_Calculate_Gradient(SP, B%pressure(:,:,co), B%gradp) B%gradp2 = 0d0 B%gradp2(0:SP%Np(1),0:SP%Np(2),1:2) = B%gradp B%velocity(:,:,:,co) = B%velocity(:,:,:,co) - & (T%dt/T%a(co,co)) * B%gradp2 B%pressure(:,:,co) = B%pressure(:,:,co-1) + & B%pressure(:,:,co) - IronVisco * B%divv2
No comments:
Post a Comment